added code handling IMU and started writing stabilization code

This commit is contained in:
2025-08-09 00:54:26 +02:00
parent f24948bc09
commit 5d86bcfe26
220 changed files with 155202 additions and 0 deletions

305
Core/Src/MPU6000.c Normal file
View File

@@ -0,0 +1,305 @@
/*
* MPU6000.c
*
* Created on: Nov 24, 2021
* Author: angoosh
*/
#include "MPU6000.h"
#include "main.h"
#include <math.h>
MPU6000_Typedef IMU;
uint32_t sysclock = 0;
void MPU6000_readGyro();
void MPU6000_readAccel();
int MPU6000_Init(I2C_HandleTypeDef *hi2c, uint32_t timeout);
uint8_t MPU6000_readRegister(uint8_t reg);
void MPU6000_Calibrate();
void MPU6000_Gyro();
void MPU6000_Raw_Data_Convert();
void MPU6000_readAll();
void MPU6000_Pedometer_Init();
void MPU6000_Pedometer();
void MPU6000_I2C_CallbackFunc(I2C_HandleTypeDef *hi2c);
void IMU_Check_State();
madgwick_handle_t madgwick_handle;
madgwick_quat_data_t quat_data;
/**
* @brief Converts raw sensor data to usable format
* @retval none
*/
void MPU6000_Raw_Data_Convert(){
for(int i = 0; i < 6; i++){
IMU.accel_data[i] = IMU.all_data[i];
IMU.gyro_data[i] = IMU.all_data[i+8];
}
IMU.g_x = (float)((int16_t)(IMU.gyro_data[0] * 256 + IMU.gyro_data[1]) - IMU.cal_g_x) / IMU.gyro_LSB;
IMU.g_y = (float)((int16_t)(IMU.gyro_data[2] * 256 + IMU.gyro_data[3]) - IMU.cal_g_y) / IMU.gyro_LSB;
IMU.g_z = (float)((int16_t)(IMU.gyro_data[4] * 256 + IMU.gyro_data[5]) - IMU.cal_g_z) / IMU.gyro_LSB;
IMU.a_x = (float)((int16_t)(IMU.accel_data[0] * 256 + IMU.accel_data[1]) - IMU.cal_a_x) / IMU.accel_LSB;
IMU.a_y = (float)((int16_t)(IMU.accel_data[2] * 256 + IMU.accel_data[3]) - IMU.cal_a_y) / IMU.accel_LSB;
IMU.a_z = (float)((int16_t)(IMU.accel_data[4] * 256 + IMU.accel_data[5]) - IMU.cal_a_z) / IMU.accel_LSB;
}
/**
* @brief Read all data on the sensor
* @retval none
*/
void MPU6000_readAll(){
HAL_I2C_Mem_Read_IT(IMU.peripheral,(MPU6000_ADDRESS << 1),ACCEL_XOUT_H,1,IMU.all_data,14);
}
/**
* @brief Read only gyroscope
* @retval none
*/
void MPU6000_readGyro(){
switch(GYRO_RANGE){
case 0:
IMU.gyro_LSB = 131;
case 1:
IMU.gyro_LSB = 65.5;
case 2:
IMU.gyro_LSB = 32.8;
case 3:
IMU.gyro_LSB = 16.4;
default:
IMU.gyro_LSB = 16.4;
}
HAL_I2C_Mem_Read_IT(IMU.peripheral,(MPU6000_ADDRESS << 1),GYRO_XOUT_H,1,IMU.gyro_data,6);
}
/**
* @brief Read only accelerometer
* @retval none
*/
void MPU6000_readAccel(){
switch(GYRO_RANGE){
case 0:
IMU.accel_LSB = 16384;
case 1:
IMU.accel_LSB = 8192;
case 2:
IMU.accel_LSB = 4096;
case 3:
IMU.accel_LSB = 2048;
default:
IMU.accel_LSB = 2048;
}
HAL_I2C_Mem_Read_IT(IMU.peripheral,(MPU6000_ADDRESS << 1),ACCEL_XOUT_H,1,IMU.accel_data,6);
}
/**
* @brief Converts accelerometer data to roll pitch and yaw
* @retval none
*/
void MPU6000_Gyro(){
IMU.roll = atan2(IMU.a_y, IMU.a_z) * 180.0 / M_PI;
IMU.pitch = atan2(IMU.a_x, IMU.a_z) * 180.0 / M_PI;
IMU.yaw = atan2(IMU.a_x, IMU.a_y) * 180.0 / M_PI;
}
/**
* @brief Initialization function of MPU6000 library
* @param i2c peripheral to be used
* @param i2c timeout
* @retval none
*/
int MPU6000_Init(I2C_HandleTypeDef *hi2c, uint32_t timeout){
uint8_t data;
IMU.accel_LSB = 16384;
IMU.gyro_LSB = 131;
IMU.peripheral = hi2c;
IMU.timeout = timeout;
IMU.dataReady = 0;
madgwick_cfg_t madgwick_cfg;
madgwick_cfg.beta = MADGWICK_BETA;
madgwick_cfg.sample_freq = MADGWICK_SAMPLE_RATE;
madgwick_handle = madgwick_init(&madgwick_cfg);
if(HAL_I2C_IsDeviceReady(hi2c, (uint16_t)(MPU6000_ADDRESS << 1), 3, IMU.timeout) != 0){
return 1;
}
data = 0x00;
HAL_I2C_Mem_Write(IMU.peripheral,(MPU6000_ADDRESS << 1),PWR_MGMT_1,1,&data,1,IMU.timeout);
HAL_Delay(200);
data = 0x07;
HAL_I2C_Mem_Write(IMU.peripheral,(MPU6000_ADDRESS << 1),SMPLRT_DIV,1,&data,1,IMU.timeout);
HAL_Delay(50);
data = 0x00;
HAL_I2C_Mem_Write(IMU.peripheral,(MPU6000_ADDRESS << 1),ACCEL_CONFIG,1,&data,1,IMU.timeout);
HAL_Delay(50);
data = 0x00;
HAL_I2C_Mem_Write(IMU.peripheral,(MPU6000_ADDRESS << 1),GYRO_CONFIG,1,&data,1,IMU.timeout);
HAL_Delay(50);
// data = 0;
// HAL_I2C_Mem_Write(IMU.peripheral,(MPU6000_ADDRESS << 1),PWR_MGMT_1,1,&data,1,IMU.timeout);
// HAL_Delay(50);
// data = 0x08;//0x28 pro lowpower rezim s frekvenci 1.25Hz
// HAL_I2C_Mem_Write(IMU.peripheral,(MPU6000_ADDRESS << 1),PWR_MGMT_1,1,&data,1,IMU.timeout);
// HAL_Delay(50);
data = 0x00;
HAL_I2C_Mem_Write(IMU.peripheral,(MPU6000_ADDRESS << 1),PWR_MGMT_2,1,&data,1,IMU.timeout);
HAL_Delay(50);
MPU6000_readAll();
return 0;
}
/**
* @brief Read certain register of sensor
* @param register address
* @retval value of register
*/
uint8_t MPU6000_readRegister(uint8_t reg){
uint8_t reg_data[1];
HAL_I2C_Mem_Read(IMU.peripheral,(MPU6000_ADDRESS << 1),reg,1,reg_data,1,IMU.timeout);
HAL_Delay(50);
return reg_data[0];
}
/**
* @brief Calibrate the sensor
* @retval none
*/
void MPU6000_Calibrate(){
uint8_t data[1] = {GYRO_XOUT_H};
uint8_t data_out[6];
HAL_I2C_Master_Transmit(IMU.peripheral, (MPU6000_ADDRESS << 1), data, 1, IMU.timeout);
HAL_I2C_Master_Receive(IMU.peripheral, (MPU6000_ADDRESS << 1), data_out, 6, IMU.timeout);
IMU.cal_g_x = data_out[0] * 256 + data_out[1];
IMU.cal_g_y = data_out[2] * 256 + data_out[3];
IMU.cal_g_z = data_out[4] * 256 + data_out[5];
data[0] = ACCEL_XOUT_H;
HAL_I2C_Master_Transmit(IMU.peripheral, (MPU6000_ADDRESS << 1), data, 1, IMU.timeout);
HAL_I2C_Master_Receive(IMU.peripheral, (MPU6000_ADDRESS << 1), data_out, 6, IMU.timeout);
IMU.cal_a_x = data_out[0] * 256 + data_out[1];
IMU.cal_a_y = data_out[2] * 256 + data_out[3];
IMU.cal_a_z = data_out[4] * 256 + data_out[5];
}
/**
* @brief Initialize pedometer
* @retval none
*/
void MPU6000_Pedometer_Init(){
IMU.pedo_index = 1;
IMU.pedo_steps = 0;
IMU.pedo_vector[0] = 0;
IMU.pedo_flag = 0;
IMU.pedo_threshold = 2000;
IMU.pedo_vector_max = 0;
IMU.pedo_vector_avg = 0;
IMU.pedo_vector_samples = 0;
sysclock = HAL_RCC_GetSysClockFreq();
}
/**
* @brief Pedometer calculations
* @retval none
*/
void MPU6000_Pedometer(){
IMU.pedo_a_x[IMU.pedo_index] = IMU.a_x * IMU.accel_LSB;
IMU.pedo_a_y[IMU.pedo_index] = IMU.a_y * IMU.accel_LSB;
IMU.pedo_a_z[IMU.pedo_index] = IMU.a_z * IMU.accel_LSB;
IMU.pedo_work_vector[IMU.pedo_index] = sqrt(((IMU.pedo_a_x[IMU.pedo_index] - IMU.pedo_avg_a_x) * (IMU.pedo_a_x[IMU.pedo_index] - IMU.pedo_avg_a_x)) + ((IMU.pedo_a_y[IMU.pedo_index] - IMU.pedo_avg_a_y) * (IMU.pedo_a_y[IMU.pedo_index] - IMU.pedo_avg_a_y)) + ((IMU.pedo_a_z[IMU.pedo_index] - IMU.pedo_avg_a_z) * (IMU.pedo_a_z[IMU.pedo_index] - IMU.pedo_avg_a_z)));
IMU.pedo_vector[0] = (IMU.pedo_work_vector[IMU.pedo_index] + IMU.pedo_work_vector[IMU.pedo_index - 1]) / 2 ;
if(IMU.pedo_vector[0] > IMU.pedo_threshold && IMU.pedo_flag == 0){
IMU.pedo_steps = IMU.pedo_steps + 1;
IMU.pedo_last_step_timestamp = HAL_GetTick();
IMU.pedo_flag = 1;
}
else if (IMU.pedo_vector[0] > IMU.pedo_threshold && IMU.pedo_flag == 1){
// Don't Count
}
if (IMU.pedo_vector[0] < IMU.pedo_threshold && IMU.pedo_flag == 1){
IMU.pedo_flag = 0;
}
if (IMU.pedo_steps < 0) {
IMU.pedo_steps = 0;
}
IMU.pedo_index++;
if(IMU.pedo_work_vector[IMU.pedo_index] > IMU.pedo_vector_max){
IMU.pedo_vector_max = IMU.pedo_work_vector[IMU.pedo_index];
}
IMU.pedo_vector_avg = IMU.pedo_vector_avg + (IMU.pedo_vector[0] - IMU.pedo_vector_avg) / ((float)IMU.pedo_vector_samples + 1);
IMU.pedo_vector_samples ++;
if(IMU.pedo_index >= 100){
IMU.pedo_index = 1;
IMU.pedo_vector[0] = 0;
float sum[3] = {0};
for(int i = 0; i < 100; i++){
sum[0] = IMU.pedo_a_x[i] + sum[0];
sum[1] = IMU.pedo_a_y[i] + sum[1];
sum[2] = IMU.pedo_a_z[i] + sum[2];
}
IMU.pedo_avg_a_x = sum[0] / 100.0;
IMU.pedo_avg_a_y = sum[1] / 100.0;
IMU.pedo_avg_a_z = sum[2] / 100.0;
}
}
/**
* @brief Function to be put into i2c callback function
* @retval none
*/
void MPU6000_I2C_CallbackFunc(I2C_HandleTypeDef *hi2c){
if(hi2c -> Instance == IMU.peripheral->Instance){
IMU.peripheral->Instance->CR1 &= ~(1 << 1);
IMU.dataReady = 1;
// MPU6000_Raw_Data_Convert();
// madgwick_update_6dof(madgwick_handle, IMU.g_x * DEG2RAD, IMU.g_y * DEG2RAD, IMU.g_z * DEG2RAD, IMU.a_x, IMU.a_y, IMU.a_z);
// madgwick_get_quaternion(madgwick_handle, &quat_data);
// IMU.roll = 180.0 / 3.14 * atan2(2 * (quat_data.q0 * quat_data.q1 + quat_data.q2 * quat_data.q3), 1 - 2 * (quat_data.q1 * quat_data.q1 + quat_data.q2 * quat_data.q2));
// IMU.pitch = 180.0 / 3.14 * asin(2 * (quat_data.q0 * quat_data.q2 - quat_data.q3 * quat_data.q1));
// IMU.yaw = 180.0 / 3.14 * atan2f(quat_data.q0 * quat_data.q3 + quat_data.q1 * quat_data.q2, 0.5f - quat_data.q2 * quat_data.q2 - quat_data.q3 * quat_data.q3);
//
// IMU.dataReady = 0;
// MPU6000_readAll();
}
}
void IMU_Check_State(){
if(IMU.dataReady){
MPU6000_Raw_Data_Convert();
madgwick_update_6dof(madgwick_handle, IMU.g_x * DEG2RAD, IMU.g_y * DEG2RAD, IMU.g_z * DEG2RAD, IMU.a_x, IMU.a_y, IMU.a_z);
madgwick_get_quaternion(madgwick_handle, &quat_data);
IMU.roll = 180.0 / 3.14 * atan2(2 * (quat_data.q0 * quat_data.q1 + quat_data.q2 * quat_data.q3), 1 - 2 * (quat_data.q1 * quat_data.q1 + quat_data.q2 * quat_data.q2));
IMU.pitch = 180.0 / 3.14 * asin(2 * (quat_data.q0 * quat_data.q2 - quat_data.q3 * quat_data.q1));
IMU.yaw = 180.0 / 3.14 * atan2f(quat_data.q0 * quat_data.q3 + quat_data.q1 * quat_data.q2, 0.5f - quat_data.q2 * quat_data.q2 - quat_data.q3 * quat_data.q3);
IMU.dataReady = 0;
MPU6000_readAll();
}
}

306
Core/Src/madgwick.c Normal file
View File

@@ -0,0 +1,306 @@
#include "madgwick.h"
#include <stddef.h>
#include <stdlib.h>
#define MADGWICK_INIT_ERR_STR "Madgwick AHRS init error"
#define MADGWICK_SET_BETA_ERR_STR "Madgwick set beta error"
#define MADGWICK_SET_SAMP_FREQ_ERR_STR "Madgwick set sample frequency error"
#define MADGWICK_GET_QUAT_ERR_STR "Madgwick get quaternion error"
#define MADGWICK_UPDATE_6DOF_ERR_STR "Madgwick update 6DOF error"
#define MADGWICK_UPDATE_9DOF_ERR_STR "Madgwick update 9DOF error"
static const char* MADGWICK_TAG = "MADGWICK AHRS";
#define MADGWICK_CHECK(a, str, ret) if(!(a)) { \
return (ret); \
}
#define STM_ERR_INVALID_ARG 1
typedef struct madgwick {
float beta;
float sample_freq;
float q0;
float q1;
float q2;
float q3;
uint8_t lock;
} madgwick_t;
static float invSqrt(float x)
{
float halfx = 0.5f * x;
float y = x;
long i = *(long*)&y;
i = 0x5f3759df - (i >> 1);
y = *(float*)&i;
y = y * (1.5f - (halfx * y * y));
return y;
}
madgwick_handle_t madgwick_init(madgwick_cfg_t *config)
{
/* Check input conditions */
MADGWICK_CHECK(config, MADGWICK_INIT_ERR_STR, NULL);
/* Allocate memory for handle structure */
madgwick_handle_t handle = calloc(1, sizeof(madgwick_t));
MADGWICK_CHECK(handle, MADGWICK_INIT_ERR_STR, NULL);
/* Update handle structure */
handle->beta = config->beta;
handle->sample_freq = config->sample_freq;
handle->q0 = 1.0f;
handle->q1 = 0.0f;
handle->q2 = 0.0f;
handle->q3 = 0.0f;
handle->lock = 0;
return handle;
}
uint8_t madgwick_set_beta(madgwick_handle_t handle, float beta)
{
/* Check input conditions */
MADGWICK_CHECK(handle, MADGWICK_SET_BETA_ERR_STR, STM_ERR_INVALID_ARG);
handle->lock = 1;
handle->beta = beta;
handle->lock = 0;
return 0;
}
uint8_t madgwick_set_sample_frequency(madgwick_handle_t handle, float sample_freq)
{
/* Check input conditions */
MADGWICK_CHECK(handle, MADGWICK_SET_SAMP_FREQ_ERR_STR, STM_ERR_INVALID_ARG);
handle->lock = 1;
handle->sample_freq = sample_freq;
handle->lock = 0;
return 0;
}
uint8_t madgwick_get_quaternion(madgwick_handle_t handle, madgwick_quat_data_t *quat_data)
{
/* Check input conditions */
MADGWICK_CHECK(handle, MADGWICK_GET_QUAT_ERR_STR, STM_ERR_INVALID_ARG);
handle->lock = 1;
quat_data->q0 = handle->q0;
quat_data->q1 = handle->q1;
quat_data->q2 = handle->q2;
quat_data->q3 = handle->q3;
handle->lock = 0;
return 0;
}
uint8_t madgwick_update_6dof(madgwick_handle_t handle, float gx, float gy, float gz, float ax, float ay, float az)
{
/* Check input conditions */
MADGWICK_CHECK(handle, MADGWICK_UPDATE_6DOF_ERR_STR, STM_ERR_INVALID_ARG);
handle->lock = 1;
float q0 = handle->q0;
float q1 = handle->q1;
float q2 = handle->q2;
float q3 = handle->q3;
float beta = handle->beta;
float sampleFreq = handle->sample_freq;
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 , _8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
// Rate of change of quaternion from gyroscope
qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
_2q0 = 2.0f * q0;
_2q1 = 2.0f * q1;
_2q2 = 2.0f * q2;
_2q3 = 2.0f * q3;
_4q0 = 4.0f * q0;
_4q1 = 4.0f * q1;
_4q2 = 4.0f * q2;
_8q1 = 8.0f * q1;
_8q2 = 8.0f * q2;
q0q0 = q0 * q0;
q1q1 = q1 * q1;
q2q2 = q2 * q2;
q3q3 = q3 * q3;
// Gradient decent algorithm corrective step
s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
s0 *= recipNorm;
s1 *= recipNorm;
s2 *= recipNorm;
s3 *= recipNorm;
// Apply feedback step
qDot1 -= beta * s0;
qDot2 -= beta * s1;
qDot3 -= beta * s2;
qDot4 -= beta * s3;
}
// Integrate rate of change of quaternion to yield quaternion
q0 += qDot1 * (1.0f / sampleFreq);
q1 += qDot2 * (1.0f / sampleFreq);
q2 += qDot3 * (1.0f / sampleFreq);
q3 += qDot4 * (1.0f / sampleFreq);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
handle->q0 = q0;
handle->q1 = q1;
handle->q2 = q2;
handle->q3 = q3;
handle->lock = 0;
return 0;
}
uint8_t madgwick_update_9dof(madgwick_handle_t handle, float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz)
{
/* Check input conditions */
MADGWICK_CHECK(handle, MADGWICK_UPDATE_9DOF_ERR_STR, STM_ERR_INVALID_ARG);
// Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
if ((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
madgwick_update_6dof(handle, gx, gy, gz, ax, ay, az);
return 0;
}
handle->lock = 1;
float q0 = handle->q0;
float q1 = handle->q1;
float q2 = handle->q2;
float q3 = handle->q3;
float beta = handle->beta;
float sampleFreq = handle->sample_freq;
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
float hx, hy;
float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
// Rate of change of quaternion from gyroscope
qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Normalise magnetometer measurement
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mx *= recipNorm;
my *= recipNorm;
mz *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
_2q0mx = 2.0f * q0 * mx;
_2q0my = 2.0f * q0 * my;
_2q0mz = 2.0f * q0 * mz;
_2q1mx = 2.0f * q1 * mx;
_2q0 = 2.0f * q0;
_2q1 = 2.0f * q1;
_2q2 = 2.0f * q2;
_2q3 = 2.0f * q3;
_2q0q2 = 2.0f * q0 * q2;
_2q2q3 = 2.0f * q2 * q3;
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
// Reference direction of Earth's magnetic field
hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
_2bx = sqrt(hx * hx + hy * hy);
_2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
s0 *= recipNorm;
s1 *= recipNorm;
s2 *= recipNorm;
s3 *= recipNorm;
// Apply feedback step
qDot1 -= beta * s0;
qDot2 -= beta * s1;
qDot3 -= beta * s2;
qDot4 -= beta * s3;
}
// Integrate rate of change of quaternion to yield quaternion
q0 += qDot1 * (1.0f / sampleFreq);
q1 += qDot2 * (1.0f / sampleFreq);
q2 += qDot3 * (1.0f / sampleFreq);
q3 += qDot4 * (1.0f / sampleFreq);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
handle->q0 = q0;
handle->q1 = q1;
handle->q2 = q2;
handle->q3 = q3;
handle->lock = 0;
return 0;
}

View File

@@ -0,0 +1,34 @@
#include "madgwick.h"
#include "stdint.h"
#include "stdio.h"
#define MADGWICK_BETA 0.1f
#define MADGWICK_SAMPLE_RATE 100.0f
#define DEG2RAD 3.14f/180.0f
madgwick_handle_t madgwick_handle;
madgwick_quat_data_t quat_data;
int main(){
madgwick_cfg_t madgwick_cfg;
madgwick_cfg.beta = MADGWICK_BETA;
madgwick_cfg.sample_freq = MADGWICK_SAMPLE_RATE;
madgwick_handle = madgwick_init(&madgwick_cfg);
madgwick_update_6dof(madgwick_handle,
0.6 * DEG2RAD,
1 * DEG2RAD,
3 * DEG2RAD,
0.43,
0.56,
1.3);
madgwick_get_quaternion(madgwick_handle, &quat_data);
float roll = 180.0 / 3.14 * atan2(2 * (quat_data.q0 * quat_data.q1 + quat_data.q2 * quat_data.q3), 1 - 2 * (quat_data.q1 * quat_data.q1 + quat_data.q2 * quat_data.q2));
float pitch = 180.0 / 3.14 * asin(2 * (quat_data.q0 * quat_data.q2 - quat_data.q3 * quat_data.q1));
float yaw = 180.0 / 3.14 * atan2f(quat_data.q0 * quat_data.q3 + quat_data.q1 * quat_data.q2, 0.5f - quat_data.q2 * quat_data.q2 - quat_data.q3 * quat_data.q3);
printf("Roll: %f\nPitch: %f\nYaw: %f\n", roll, pitch, yaw);
return 0;
}

457
Core/Src/main.c Normal file
View File

@@ -0,0 +1,457 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_TIM1_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
int state = 0;
state = MPU6000_Init(&hi2c1, 1000);
if(!state){
HAL_GPIO_WritePin(GPIOC, LED_Pin, 1);
}
#ifndef USE_CRSF
//SBUS_Init(&huart1, &htim1, &htim2, &htim3, &htim14);
#else
//CRSF_Init(&huart1, &htim1, &htim2, &htim3, &htim14);
#endif
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
//#ifndef USE_CRSF
// SBUS_Check_State();
//#else
// CRSF_Check_State();
//#endif
IMU_Check_State();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
RCC_OscInitStruct.PLL.PLLN = 8;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x00303D5D;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_DISABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 63;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 19999;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 1500;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 63;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 19999;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 1500;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LED_Pin */
GPIO_InitStruct.Pin = LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/*void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){
#ifndef USE_CRSF
SBUS_UART_Callback(huart);
#else
CRSF_UART_Callback(huart);
#endif
}*/
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c){
MPU6000_I2C_CallbackFunc(hi2c);
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

40
Core/Src/stabilize.c Normal file
View File

@@ -0,0 +1,40 @@
/*
* stabilize.c
*
* Created on: Aug 9, 2025
* Author: angoosh
*/
#include "stabilize.h"
Stabilize_Typedef STAB;
void Stabilize_init(){
STAB.pitch_gain = 1;
STAB.roll_gain = 1;
STAB.yaw_gain = 1;
}
int Stabilize_Roll(int servo){
int stab_servo = 0;
stab_servo = servo + (IMU.roll * STAB.roll_gain);
return stab_servo;
}
int Stabilize_Pitch(int servo){
int stab_servo = 0;
stab_servo = servo + (IMU.pitch * STAB.pitch_gain);
return stab_servo;
}
int Stabilize_Yaw(int servo){
int stab_servo = 0;
stab_servo = servo + (IMU.yaw * STAB.yaw_gain);
return stab_servo;
}

View File

@@ -0,0 +1,293 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32g0xx_hal_msp.c
* @brief This file provides code for the MSP Initialization
* and de-Initialization codes.
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN Define */
/* USER CODE END Define */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN Macro */
/* USER CODE END Macro */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* External functions --------------------------------------------------------*/
/* USER CODE BEGIN ExternalFunctions */
/* USER CODE END ExternalFunctions */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */
__HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE();
/* System interrupt init*/
/* USER CODE BEGIN MspInit 1 */
/* USER CODE END MspInit 1 */
}
/**
* @brief I2C MSP Initialization
* This function configures the hardware resources used in this example
* @param hi2c: I2C handle pointer
* @retval None
*/
void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if(hi2c->Instance==I2C1)
{
/* USER CODE BEGIN I2C1_MspInit 0 */
/* USER CODE END I2C1_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_HSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
__HAL_RCC_GPIOB_CLK_ENABLE();
/**I2C1 GPIO Configuration
PB8 ------> I2C1_SCL
PB9 ------> I2C1_SDA
*/
GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF6_I2C1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C1_CLK_ENABLE();
/* I2C1 interrupt Init */
HAL_NVIC_SetPriority(I2C1_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(I2C1_IRQn);
/* USER CODE BEGIN I2C1_MspInit 1 */
/* USER CODE END I2C1_MspInit 1 */
}
}
/**
* @brief I2C MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hi2c: I2C handle pointer
* @retval None
*/
void HAL_I2C_MspDeInit(I2C_HandleTypeDef* hi2c)
{
if(hi2c->Instance==I2C1)
{
/* USER CODE BEGIN I2C1_MspDeInit 0 */
/* USER CODE END I2C1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_I2C1_CLK_DISABLE();
/**I2C1 GPIO Configuration
PB8 ------> I2C1_SCL
PB9 ------> I2C1_SDA
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_8);
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_9);
/* I2C1 interrupt DeInit */
HAL_NVIC_DisableIRQ(I2C1_IRQn);
/* USER CODE BEGIN I2C1_MspDeInit 1 */
/* USER CODE END I2C1_MspDeInit 1 */
}
}
/**
* @brief TIM_Base MSP Initialization
* This function configures the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
{
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if(htim_base->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspInit 0 */
/* USER CODE END TIM1_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_TIM1;
PeriphClkInit.Tim1ClockSelection = RCC_TIM1CLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
__HAL_RCC_TIM1_CLK_ENABLE();
/* USER CODE BEGIN TIM1_MspInit 1 */
/* USER CODE END TIM1_MspInit 1 */
}
else if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */
/* USER CODE END TIM2_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM2_CLK_ENABLE();
/* USER CODE BEGIN TIM2_MspInit 1 */
/* USER CODE END TIM2_MspInit 1 */
}
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(htim->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspPostInit 0 */
/* USER CODE END TIM1_MspPostInit 0 */
__HAL_RCC_GPIOA_CLK_ENABLE();
/**TIM1 GPIO Configuration
PA8 ------> TIM1_CH1
PA11 [PA9] ------> TIM1_CH4
*/
GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE BEGIN TIM1_MspPostInit 1 */
/* USER CODE END TIM1_MspPostInit 1 */
}
else if(htim->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspPostInit 0 */
/* USER CODE END TIM2_MspPostInit 0 */
__HAL_RCC_GPIOA_CLK_ENABLE();
/**TIM2 GPIO Configuration
PA0 ------> TIM2_CH1
PA1 ------> TIM2_CH2
PA2 ------> TIM2_CH3
PA3 ------> TIM2_CH4
*/
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE BEGIN TIM2_MspPostInit 1 */
/* USER CODE END TIM2_MspPostInit 1 */
}
}
/**
* @brief TIM_Base MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM1)
{
/* USER CODE BEGIN TIM1_MspDeInit 0 */
/* USER CODE END TIM1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM1_CLK_DISABLE();
/* USER CODE BEGIN TIM1_MspDeInit 1 */
/* USER CODE END TIM1_MspDeInit 1 */
}
else if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */
/* USER CODE END TIM2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM2_CLK_DISABLE();
/* USER CODE BEGIN TIM2_MspDeInit 1 */
/* USER CODE END TIM2_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

163
Core/Src/stm32g0xx_it.c Normal file
View File

@@ -0,0 +1,163 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32g0xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32g0xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
extern I2C_HandleTypeDef hi2c1;
/* USER CODE BEGIN EV */
/* USER CODE END EV */
/******************************************************************************/
/* Cortex-M0+ Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
/* USER CODE BEGIN SVC_IRQn 0 */
/* USER CODE END SVC_IRQn 0 */
/* USER CODE BEGIN SVC_IRQn 1 */
/* USER CODE END SVC_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32G0xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32g0xx.s). */
/******************************************************************************/
/**
* @brief This function handles I2C1 event global interrupt / I2C1 wake-up interrupt through EXTI line 23.
*/
void I2C1_IRQHandler(void)
{
/* USER CODE BEGIN I2C1_IRQn 0 */
/* USER CODE END I2C1_IRQn 0 */
if (hi2c1.Instance->ISR & (I2C_FLAG_BERR | I2C_FLAG_ARLO | I2C_FLAG_OVR)) {
HAL_I2C_ER_IRQHandler(&hi2c1);
} else {
HAL_I2C_EV_IRQHandler(&hi2c1);
}
/* USER CODE BEGIN I2C1_IRQn 1 */
/* USER CODE END I2C1_IRQn 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

176
Core/Src/syscalls.c Normal file
View File

@@ -0,0 +1,176 @@
/**
******************************************************************************
* @file syscalls.c
* @author Auto-generated by STM32CubeIDE
* @brief STM32CubeIDE Minimal System calls file
*
* For more information about which c-functions
* need which of these lowlevel functions
* please consult the Newlib libc-manual
******************************************************************************
* @attention
*
* Copyright (c) 2020-2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes */
#include <sys/stat.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <sys/times.h>
/* Variables */
extern int __io_putchar(int ch) __attribute__((weak));
extern int __io_getchar(void) __attribute__((weak));
char *__env[1] = { 0 };
char **environ = __env;
/* Functions */
void initialise_monitor_handles()
{
}
int _getpid(void)
{
return 1;
}
int _kill(int pid, int sig)
{
(void)pid;
(void)sig;
errno = EINVAL;
return -1;
}
void _exit (int status)
{
_kill(status, -1);
while (1) {} /* Make sure we hang here */
}
__attribute__((weak)) int _read(int file, char *ptr, int len)
{
(void)file;
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
*ptr++ = __io_getchar();
}
return len;
}
__attribute__((weak)) int _write(int file, char *ptr, int len)
{
(void)file;
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
__io_putchar(*ptr++);
}
return len;
}
int _close(int file)
{
(void)file;
return -1;
}
int _fstat(int file, struct stat *st)
{
(void)file;
st->st_mode = S_IFCHR;
return 0;
}
int _isatty(int file)
{
(void)file;
return 1;
}
int _lseek(int file, int ptr, int dir)
{
(void)file;
(void)ptr;
(void)dir;
return 0;
}
int _open(char *path, int flags, ...)
{
(void)path;
(void)flags;
/* Pretend like we always fail */
return -1;
}
int _wait(int *status)
{
(void)status;
errno = ECHILD;
return -1;
}
int _unlink(char *name)
{
(void)name;
errno = ENOENT;
return -1;
}
int _times(struct tms *buf)
{
(void)buf;
return -1;
}
int _stat(char *file, struct stat *st)
{
(void)file;
st->st_mode = S_IFCHR;
return 0;
}
int _link(char *old, char *new)
{
(void)old;
(void)new;
errno = EMLINK;
return -1;
}
int _fork(void)
{
errno = EAGAIN;
return -1;
}
int _execve(char *name, char **argv, char **env)
{
(void)name;
(void)argv;
(void)env;
errno = ENOMEM;
return -1;
}

79
Core/Src/sysmem.c Normal file
View File

@@ -0,0 +1,79 @@
/**
******************************************************************************
* @file sysmem.c
* @author Generated by STM32CubeIDE
* @brief STM32CubeIDE System Memory calls file
*
* For more information about which C functions
* need which of these lowlevel functions
* please consult the newlib libc manual
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes */
#include <errno.h>
#include <stdint.h>
/**
* Pointer to the current high watermark of the heap usage
*/
static uint8_t *__sbrk_heap_end = NULL;
/**
* @brief _sbrk() allocates memory to the newlib heap and is used by malloc
* and others from the C library
*
* @verbatim
* ############################################################################
* # .data # .bss # newlib heap # MSP stack #
* # # # # Reserved by _Min_Stack_Size #
* ############################################################################
* ^-- RAM start ^-- _end _estack, RAM end --^
* @endverbatim
*
* This implementation starts allocating at the '_end' linker symbol
* The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack
* The implementation considers '_estack' linker symbol to be RAM end
* NOTE: If the MSP stack, at any point during execution, grows larger than the
* reserved size, please increase the '_Min_Stack_Size'.
*
* @param incr Memory size
* @return Pointer to allocated memory
*/
void *_sbrk(ptrdiff_t incr)
{
extern uint8_t _end; /* Symbol defined in the linker script */
extern uint8_t _estack; /* Symbol defined in the linker script */
extern uint32_t _Min_Stack_Size; /* Symbol defined in the linker script */
const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size;
const uint8_t *max_heap = (uint8_t *)stack_limit;
uint8_t *prev_heap_end;
/* Initialize heap end at first call */
if (NULL == __sbrk_heap_end)
{
__sbrk_heap_end = &_end;
}
/* Protect heap from growing into the reserved MSP stack */
if (__sbrk_heap_end + incr > max_heap)
{
errno = ENOMEM;
return (void *)-1;
}
prev_heap_end = __sbrk_heap_end;
__sbrk_heap_end += incr;
return (void *)prev_heap_end;
}

302
Core/Src/system_stm32g0xx.c Normal file
View File

@@ -0,0 +1,302 @@
/**
******************************************************************************
* @file system_stm32g0xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M0+ Device Peripheral Access Layer System Source File
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32g0xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
* After each device reset the HSI (8 MHz then 16 MHz) is used as system clock source.
* Then SystemInit() function is called, in "startup_stm32g0xx.s" file, to
* configure the system clock before to branch to main program.
*
* This file configures the system clock as follows:
*=============================================================================
*-----------------------------------------------------------------------------
* System Clock source | HSI
*-----------------------------------------------------------------------------
* SYSCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* HCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* AHB Prescaler | 1
*-----------------------------------------------------------------------------
* APB Prescaler | 1
*-----------------------------------------------------------------------------
* HSI Division factor | 1
*-----------------------------------------------------------------------------
* PLL_M | 1
*-----------------------------------------------------------------------------
* PLL_N | 8
*-----------------------------------------------------------------------------
* PLL_P | 7
*-----------------------------------------------------------------------------
* PLL_Q | 2
*-----------------------------------------------------------------------------
* PLL_R | 2
*-----------------------------------------------------------------------------
* Require 48MHz for RNG | Disabled
*-----------------------------------------------------------------------------
*=============================================================================
******************************************************************************
* @attention
*
* Copyright (c) 2018-2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32g0xx_system
* @{
*/
/** @addtogroup STM32G0xx_System_Private_Includes
* @{
*/
#include "stm32g0xx.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE (8000000UL) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE (16000000UL) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
#if !defined (LSI_VALUE)
#define LSI_VALUE (32000UL) /*!< Value of LSI in Hz*/
#endif /* LSI_VALUE */
#if !defined (LSE_VALUE)
#define LSE_VALUE (32768UL) /*!< Value of LSE in Hz*/
#endif /* LSE_VALUE */
/**
* @}
*/
/** @addtogroup STM32G0xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G0xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/* Note: Following vector table addresses must be defined in line with linker
configuration. */
/*!< Uncomment the following line if you need to relocate the vector table
anywhere in Flash or Sram, else the vector table is kept at the automatic
remap of boot address selected */
/* #define USER_VECT_TAB_ADDRESS */
#if defined(USER_VECT_TAB_ADDRESS)
/*!< Uncomment the following line if you need to relocate your vector Table
in Sram else user remap will be done in Flash. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS SRAM_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#endif /* VECT_TAB_SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32G0xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G0xx_System_Private_Variables
* @{
*/
/* The SystemCoreClock variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 16000000UL;
const uint32_t AHBPrescTable[16UL] = {0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 1UL, 2UL, 3UL, 4UL, 6UL, 7UL, 8UL, 9UL};
const uint32_t APBPrescTable[8UL] = {0UL, 0UL, 0UL, 0UL, 1UL, 2UL, 3UL, 4UL};
/**
* @}
*/
/** @addtogroup STM32G0xx_System_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G0xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system.
* @param None
* @retval None
*/
void SystemInit(void)
{
/* Configure the Vector Table location -------------------------------------*/
#if defined(USER_VECT_TAB_ADDRESS)
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation */
#endif /* USER_VECT_TAB_ADDRESS */
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**) / HSI division factor
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
*
* - If SYSCLK source is LSI, SystemCoreClock will contain the LSI_VALUE
*
* - If SYSCLK source is LSE, SystemCoreClock will contain the LSE_VALUE
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(***)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (**) HSI_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***) HSE_VALUE is a constant defined in stm32g0xx_hal_conf.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate(void)
{
uint32_t tmp;
uint32_t pllvco;
uint32_t pllr;
uint32_t pllsource;
uint32_t pllm;
uint32_t hsidiv;
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case RCC_CFGR_SWS_0: /* HSE used as system clock */
SystemCoreClock = HSE_VALUE;
break;
case (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0): /* LSI used as system clock */
SystemCoreClock = LSI_VALUE;
break;
case RCC_CFGR_SWS_2: /* LSE used as system clock */
SystemCoreClock = LSE_VALUE;
break;
case RCC_CFGR_SWS_1: /* PLL used as system clock */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1UL;
if(pllsource == 0x03UL) /* HSE used as PLL clock source */
{
pllvco = (HSE_VALUE / pllm);
}
else /* HSI used as PLL clock source */
{
pllvco = (HSI_VALUE / pllm);
}
pllvco = pllvco * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos);
pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1UL);
SystemCoreClock = pllvco/pllr;
break;
case 0x00000000U: /* HSI used as system clock */
default: /* HSI used as system clock */
hsidiv = (1UL << ((READ_BIT(RCC->CR, RCC_CR_HSIDIV))>> RCC_CR_HSIDIV_Pos));
SystemCoreClock = (HSI_VALUE/hsidiv);
break;
}
/* Compute HCLK clock frequency --------------------------------------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos)];
/* HCLK clock frequency */
SystemCoreClock >>= tmp;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/