#include "madgwick.h" #include #include #define MADGWICK_INIT_ERR_STR "Madgwick AHRS init error" #define MADGWICK_SET_BETA_ERR_STR "Madgwick set beta error" #define MADGWICK_SET_SAMP_FREQ_ERR_STR "Madgwick set sample frequency error" #define MADGWICK_GET_QUAT_ERR_STR "Madgwick get quaternion error" #define MADGWICK_UPDATE_6DOF_ERR_STR "Madgwick update 6DOF error" #define MADGWICK_UPDATE_9DOF_ERR_STR "Madgwick update 9DOF error" static const char* MADGWICK_TAG = "MADGWICK AHRS"; #define MADGWICK_CHECK(a, str, ret) if(!(a)) { \ return (ret); \ } #define STM_ERR_INVALID_ARG 1 typedef struct madgwick { float beta; float sample_freq; float q0; float q1; float q2; float q3; uint8_t lock; } madgwick_t; static float invSqrt(float x) { float halfx = 0.5f * x; float y = x; long i = *(long*)&y; i = 0x5f3759df - (i >> 1); y = *(float*)&i; y = y * (1.5f - (halfx * y * y)); return y; } madgwick_handle_t madgwick_init(madgwick_cfg_t *config) { /* Check input conditions */ MADGWICK_CHECK(config, MADGWICK_INIT_ERR_STR, NULL); /* Allocate memory for handle structure */ madgwick_handle_t handle = calloc(1, sizeof(madgwick_t)); MADGWICK_CHECK(handle, MADGWICK_INIT_ERR_STR, NULL); /* Update handle structure */ handle->beta = config->beta; handle->sample_freq = config->sample_freq; handle->q0 = 1.0f; handle->q1 = 0.0f; handle->q2 = 0.0f; handle->q3 = 0.0f; handle->lock = 0; return handle; } uint8_t madgwick_set_beta(madgwick_handle_t handle, float beta) { /* Check input conditions */ MADGWICK_CHECK(handle, MADGWICK_SET_BETA_ERR_STR, STM_ERR_INVALID_ARG); handle->lock = 1; handle->beta = beta; handle->lock = 0; return 0; } uint8_t madgwick_set_sample_frequency(madgwick_handle_t handle, float sample_freq) { /* Check input conditions */ MADGWICK_CHECK(handle, MADGWICK_SET_SAMP_FREQ_ERR_STR, STM_ERR_INVALID_ARG); handle->lock = 1; handle->sample_freq = sample_freq; handle->lock = 0; return 0; } uint8_t madgwick_get_quaternion(madgwick_handle_t handle, madgwick_quat_data_t *quat_data) { /* Check input conditions */ MADGWICK_CHECK(handle, MADGWICK_GET_QUAT_ERR_STR, STM_ERR_INVALID_ARG); handle->lock = 1; quat_data->q0 = handle->q0; quat_data->q1 = handle->q1; quat_data->q2 = handle->q2; quat_data->q3 = handle->q3; handle->lock = 0; return 0; } uint8_t madgwick_update_6dof(madgwick_handle_t handle, float gx, float gy, float gz, float ax, float ay, float az) { /* Check input conditions */ MADGWICK_CHECK(handle, MADGWICK_UPDATE_6DOF_ERR_STR, STM_ERR_INVALID_ARG); handle->lock = 1; float q0 = handle->q0; float q1 = handle->q1; float q2 = handle->q2; float q3 = handle->q3; float beta = handle->beta; float sampleFreq = handle->sample_freq; float recipNorm; float s0, s1, s2, s3; float qDot1, qDot2, qDot3, qDot4; float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 , _8q1, _8q2, q0q0, q1q1, q2q2, q3q3; // Rate of change of quaternion from gyroscope qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz); qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy); qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx); qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx); // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { // Normalise accelerometer measurement recipNorm = invSqrt(ax * ax + ay * ay + az * az); ax *= recipNorm; ay *= recipNorm; az *= recipNorm; // Auxiliary variables to avoid repeated arithmetic _2q0 = 2.0f * q0; _2q1 = 2.0f * q1; _2q2 = 2.0f * q2; _2q3 = 2.0f * q3; _4q0 = 4.0f * q0; _4q1 = 4.0f * q1; _4q2 = 4.0f * q2; _8q1 = 8.0f * q1; _8q2 = 8.0f * q2; q0q0 = q0 * q0; q1q1 = q1 * q1; q2q2 = q2 * q2; q3q3 = q3 * q3; // Gradient decent algorithm corrective step s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay; s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az; s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az; s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay; recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude s0 *= recipNorm; s1 *= recipNorm; s2 *= recipNorm; s3 *= recipNorm; // Apply feedback step qDot1 -= beta * s0; qDot2 -= beta * s1; qDot3 -= beta * s2; qDot4 -= beta * s3; } // Integrate rate of change of quaternion to yield quaternion q0 += qDot1 * (1.0f / sampleFreq); q1 += qDot2 * (1.0f / sampleFreq); q2 += qDot3 * (1.0f / sampleFreq); q3 += qDot4 * (1.0f / sampleFreq); // Normalise quaternion recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= recipNorm; q1 *= recipNorm; q2 *= recipNorm; q3 *= recipNorm; handle->q0 = q0; handle->q1 = q1; handle->q2 = q2; handle->q3 = q3; handle->lock = 0; return 0; } uint8_t madgwick_update_9dof(madgwick_handle_t handle, float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) { /* Check input conditions */ MADGWICK_CHECK(handle, MADGWICK_UPDATE_9DOF_ERR_STR, STM_ERR_INVALID_ARG); // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation) if ((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) { madgwick_update_6dof(handle, gx, gy, gz, ax, ay, az); return 0; } handle->lock = 1; float q0 = handle->q0; float q1 = handle->q1; float q2 = handle->q2; float q3 = handle->q3; float beta = handle->beta; float sampleFreq = handle->sample_freq; float recipNorm; float s0, s1, s2, s3; float qDot1, qDot2, qDot3, qDot4; float hx, hy; float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3; // Rate of change of quaternion from gyroscope qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz); qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy); qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx); qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx); // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { // Normalise accelerometer measurement recipNorm = invSqrt(ax * ax + ay * ay + az * az); ax *= recipNorm; ay *= recipNorm; az *= recipNorm; // Normalise magnetometer measurement recipNorm = invSqrt(mx * mx + my * my + mz * mz); mx *= recipNorm; my *= recipNorm; mz *= recipNorm; // Auxiliary variables to avoid repeated arithmetic _2q0mx = 2.0f * q0 * mx; _2q0my = 2.0f * q0 * my; _2q0mz = 2.0f * q0 * mz; _2q1mx = 2.0f * q1 * mx; _2q0 = 2.0f * q0; _2q1 = 2.0f * q1; _2q2 = 2.0f * q2; _2q3 = 2.0f * q3; _2q0q2 = 2.0f * q0 * q2; _2q2q3 = 2.0f * q2 * q3; q0q0 = q0 * q0; q0q1 = q0 * q1; q0q2 = q0 * q2; q0q3 = q0 * q3; q1q1 = q1 * q1; q1q2 = q1 * q2; q1q3 = q1 * q3; q2q2 = q2 * q2; q2q3 = q2 * q3; q3q3 = q3 * q3; // Reference direction of Earth's magnetic field hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3; hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3; _2bx = sqrt(hx * hx + hy * hy); _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3; _4bx = 2.0f * _2bx; _4bz = 2.0f * _2bz; // Gradient decent algorithm corrective step s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude s0 *= recipNorm; s1 *= recipNorm; s2 *= recipNorm; s3 *= recipNorm; // Apply feedback step qDot1 -= beta * s0; qDot2 -= beta * s1; qDot3 -= beta * s2; qDot4 -= beta * s3; } // Integrate rate of change of quaternion to yield quaternion q0 += qDot1 * (1.0f / sampleFreq); q1 += qDot2 * (1.0f / sampleFreq); q2 += qDot3 * (1.0f / sampleFreq); q3 += qDot4 * (1.0f / sampleFreq); // Normalise quaternion recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= recipNorm; q1 *= recipNorm; q2 *= recipNorm; q3 *= recipNorm; handle->q0 = q0; handle->q1 = q1; handle->q2 = q2; handle->q3 = q3; handle->lock = 0; return 0; }